Cyclic Strain Enhances Cellular Uptake of Nanoparticles
نویسندگان
چکیده
Nanoparticles (NPs) have gained increasing interest in recent years due to their potential use as drug carrier, imaging, and diagnostic agents in pharmaceutical and biomedical applications. While many cells in vivo experience mechanical forces, little is known about the correlation of the mechanical stimulation and the internalization of NPs into cells. This paper investigates the effects of applied cyclic strain on NP uptake by cells. Bovine aortic endothelial cells (BAECs) were cultured on collagen-coated culture plates and placed under cyclic equal-axial strains. NPs of sizes ranging from 50 to 200 nm were loaded at a concentration of 0.02mg/mL and cyclic strains from 5 to 15% were applied to the cells for one hour. The cyclic strain results in a significant enhancement in NP uptake, which increases almost linearly with strain level. The enhanced uptake also depends on size of the NPs with the highest uptake observed on 100 nmNP.The effect of enhanced NP uptake lasts around 13 hours after cyclic stretch. Such in vitro cell stretch systems mimic physiological conditions of the endothelial cells in vivo and could potentially serve as a biomimetic platform for drug therapeutic evaluation.
منابع مشابه
Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis
The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake ...
متن کاملIn-vitro cellular uptake and transport study of 9-nitrocamptothecin PLGA nanoparticles across Caco-2 cell monolayer model
The uptake and transport of 9-nitrocamptothecin (9-NC), a potent anticancer agent, across Caco-2 cell monolayers was studied as a free and PLGA nanoparticle loaded drug. Different sizes (110 to 950 nm) of 9-nitrocamptothecin nanoparticles using poly (lactic-glycolic acid) were prepared by via the nanoprecipitation method. The transport of nanoparticles across the Caco-2 cell monolayer as a func...
متن کاملIn-vitro cellular uptake and transport study of 9-nitrocamptothecin PLGA nanoparticles across Caco-2 cell monolayer model
The uptake and transport of 9-nitrocamptothecin (9-NC), a potent anticancer agent, across Caco-2 cell monolayers was studied as a free and PLGA nanoparticle loaded drug. Different sizes (110 to 950 nm) of 9-nitrocamptothecin nanoparticles using poly (lactic-glycolic acid) were prepared by via the nanoprecipitation method. The transport of nanoparticles across the Caco-2 cell monolayer as a func...
متن کاملThe Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent
Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...
متن کاملThe Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent
Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...
متن کامل